Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.3 Electrical, magnetic, optical, communications, computer engineering; electronics, lighting

Thông tin xuất bản: Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2017

Mô tả vật lý: Size: p. 647-655 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 255743

 Here, anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC?s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm<
 sup>
 ?2<
 /sup>
  at 80 �C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM
  similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h<
 sup>
 ?1<
 /sup>
  for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h<
 sup>
 ?1<
 /sup>
  over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge
  this suggests that PdAg particle growth may be the main reason for the performance drop.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH