Understanding Water Transport in Polymer Electrolyte Fuel Cells Using Coupled Continuum and Pore-Network Models [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 537.6 Electrodynamics (Electric currents) and thermoelectricity

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

Mô tả vật lý: Size: p. 725-733 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 255801

Water management remains a critical issue for polymer electrolyte fuel cell performance and durability, especially at lower temperatures and with ultrathin electrodes. To understand and explain experimental observations better, water transport in gas diffusion layers (GDLs) with macroscopically heterogeneous morphologies was simulated using a novel coupling of continuum and pore-network models. X-ray computed tomography was used to extract GDL material parameters for use in the pore-network model. The simulations were conducted to explain experimental observations associated with stacking of anode GDLs, where stacking of the anode GDLs increased the limiting current density. Through imaging, it is shown that the stacked anode GDL exhibited an interfacial region of high porosity. The coupled model shows that this morphology allowed more efficient water movement through the anode and higher temperatures at the cathode compared to the single GDL case. As a result, the cathode exhibited less flooding and hence better low temperature performance with the stacked anode GDL.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH