An experimental and modeling study of the autoignition of 3-methylheptane [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 662.3 Technology of explosives, fuels, related products

Thông tin xuất bản: Livermore, Calif : Oak Ridge, Tenn. : Lawrence Livermore National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2013

Mô tả vật lý: Size: p. 335-343 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 255938

 An experimental and kinetic modeling study of the autoignition of 3-methylheptane, a compound representative of the high molecular weight lightly branched alkanes found in large quantities in conventional and synthetic aviation kerosene and diesel fuels, is reported. Shock tube and rapid compression machine ignition delay time measurements are reported over a wide range of conditions of relevance to combustion engine applications: temperatures from 678 to 1356 K
  pressures of 6.5, 10, 20, and 50 atm
  and equivalence ratios of 0.5, 1.0, and 2.0. The wide range of temperatures examined provides observation of autoignition in three reactivity regimes, including the negative temperature coefficient (NTC) regime characteristic of paraffinic fuels. Comparisons made between the current ignition delay measurements for 3-methylheptane and previous results for n-octane and 2-methylheptane quantifies the influence of a single methyl substitution and its location on the reactivity of alkanes. It is found that the three C8 alkane isomers have indistinguishable high-temperature ignition delay but their ignition delay times deviate in the NTC and low-temperature regimes in correlation with their research octane numbers. The experimental results are compared with the predictions of a proposed kinetic model that includes both high- and low-temperature oxidation chemistry. The model mechanistically explains the differences in reactivity for n-octane, 2-methylheptane, and 3-methylheptane in the NTC through the influence of the methyl substitution on the rates of isomerization reactions in the low-temperature chain branching pathway, that ultimately leads to ketohydroperoxide species, and the competition between low-temperature chain branching and the formation of cyclic ethers, in a chain propagating pathway.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH