Efficient Optimization of Large Wind Farms for Real-Time Control [electronic resource] : Preprint

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.5 Pneumatic, vacuum, low-temperature technologies

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2018

Mô tả vật lý: Size: 1.8 MB : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 258103

Wind turbines in a wind farm typically operate individually to maximize their own performance regardless of the impact of aerodynamic interactions on neighboring turbines. Properly coordinating turbines, by operating some turbines suboptimally, within a wind farm has the potential to improve overall wind farm performance. Computing the optimal control strategy under varying atmospheric conditions can be computationally intense for large wind farms. As wind power farms increase in size and related models become more complex, computationally efficient algorithms are needed to perform real-time optimization and control. This study proposes a distributed optimization framework and computationally efficient wake steering wind farm control strategy that uses the yaw angle of a turbine to alter the behavior of a turbine wake and minimize turbine interactions. This computational efficiency allows the strategy to be feasible for real-time control.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH