Determining Wind Turbine Gearbox Model Complexity Using Measurement Validation and Cost Comparison [electronic resource] : Preprint

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.856 Applied physics

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2012

Mô tả vật lý: Size: 2.7 MB : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 259177

The Gearbox Reliability Collaborative (GRC) has conducted extensive field and dynamometer test campaigns on two heavily instrumented wind turbine gearboxes. In this paper, data from the planetary stage is used to evaluate the accuracy and computation time of numerical models of the gearbox. First, planet-bearing load and motion data is analyzed to characterize planetary stage behavior indifferent environments and to derive requirements for gearbox models and life calculations. Second, a set of models are constructed that represent different levels of fidelity. Simulations of the test conditions are compared to the test data and the computational cost of the models are compared. The test data suggests that the planet-bearing life calculations should be made separately for eachbearing on a row due to unequal load distribution. It also shows that tilting of the gear axes is related to planet load share. The modeling study concluded that fully flexible models were needed to predict planet-bearing loading in some cases, although less complex models were able to achieve good correlation in the field-loading case. Significant differences in planet load share were found insimulation and were dependent on the scope of the model and the bearing stiffness model used.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH