Efficient bi-directional coupling of 3D computational fluid-particle dynamics and 1D Multiple Path Particle Dosimetry lung models for multiscale modeling of aerosol dosimetry [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 637.6 Processing dairy and related products

Thông tin xuất bản: Richland, Wash. : Oak Ridge, Tenn. : Pacific Northwest National Laboratory (U.S.) ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: Article No. 105647 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 259840

The development of predictive aerosol dosimetry models has been a major focus of environmental toxicology and pharmaceutical health research for decades. One-dimensional (1D) models successfully predict overall deposition averages but fail to accurately predict local deposition. Computational fluid-particle dynamics (CFPD) models provide site-specific predictions but at a computational cost that prohibits whole lung predictions. Thus, there is a need for developing multiscale strategies to provide a realistic subject-specific picture of the fate of inhaled aerosol in the lungs. CT-based 3D/CFPD models of the large airways were bidirectionally coupled with individualized 1D Navier-Stokes airflow and particle transport based upon the widely used Multiple Path Particle Dosimetry Model (MPPD). Distribution of airflows among lobes was adjusted by measured lobar volume changes observed in CT images between FRC and FRC + 1.5 L. Additionally, as a test of the effectiveness of the coupling procedures, deposition modeling of previous 1 �m aerosol exposure studies was performed. The complete coupled model was run for 3 breaths, with the computation-intense portion being the 3D CFD Lagrangian particle tracking calculation. The average deposition per breath was 11% in the combined multiscale model with site-specific doses available in the CFPD portion of the model and airway- or region-specific deposition available for the MPPD portion. In conclusion, the key methods developed in this study enable predictions of ventilation heterogeneities and aerosol deposition across the lungs that are not captured by 3D or 1D models alone. Overall, these methods can be used as the foundation for multi-scale modeling of the full respiratory system.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH