Discovery and Lead-Optimization of 4,5-Dihydropyrazoles as Mono-Kinase Selective, Orally Bioavailable and Efficacious Inhibitors of Receptor Interacting Protein 1 (RIP1) Kinase [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 541.3 Miscellaneous topics in physical chemistry

Thông tin xuất bản: Argonne, Ill. : Oak Ridge, Tenn. : Argonne National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: p. 5096-5110 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 260060

RIP1 kinase regulates necroptosis and inflammation and may play an important role in contributing to a variety of human pathologies, including inflammatory and neurological diseases. Currently, RIP1 kinase inhibitors have advanced into early clinical trials for evaluation in inflammatory diseases such as psoriasis, rheumatoid arthritis, and ulcerative colitis and neurological diseases such as amyotrophic lateral sclerosis and Alzheimer?s disease. Here, we report on the design of potent and highly selective dihydropyrazole (DHP) RIP1 kinase inhibitors starting from a high-throughput screen and the lead-optimization of this series from a lead with minimal rat oral exposure to the identification of dihydropyrazole 77 with good pharmacokinetic profiles in multiple species. Additionally, we identified a potent murine RIP1 kinase inhibitor 76 as a valuable in vivo tool molecule suitable for evaluating the role of RIP1 kinase in chronic models of disease. DHP 76 showed efficacy in mouse models of both multiple sclerosis and human retinitis pigmentosa.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH