Ensemble Docking in Drug Discovery [electronic resource] : How Many Protein Configurations from Molecular Dynamics Simulations are Needed To Reproduce Known Ligand Binding?

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 547.2 Organic chemical reactions formerly 547.139

Thông tin xuất bản: Oak Ridge, Tenn. : Oak Ridge, Tenn. : Oak Ridge National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: TBD- : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 260087

Ensemble docking in drug discovery or chemical biology uses dynamical simulations of target proteins to generate binding site conformations for docking campaigns. We demonstrate that 600 ns molecular dynamics simulations of four G-protein-coupled receptors in their membrane environments generate ensembles of protein configurations that, collectively, are selected by 70?99% of the known ligands of these proteins. Thus, the process of ligand recognition by conformational selection can be reproduced by combining molecular dynamics and docking calculations. Clustering of the molecular dynamics trajectories, however, does not necessarily identify the protein conformations that are most often selected by the ligands.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH