Encoding of Promiscuity in an Aminoglycoside Acetyltransferase [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 610.28 Auxiliary techniques and procedures; apparatus, equipment, materials

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2018

Mô tả vật lý: Size: p. 10218-10227 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 260173

Aminoglycoside antibiotics are a large family of antibiotics that can be divided into two distinct classes on the basis of the substitution pattern of the central deoxystreptamine ring. Although aminoglycosides are chemically, structurally, and topologically diverse, some aminoglycoside-modifying enzymes (AGMEs) are able to inactivate as many as 15 aminoglycosides from the two main classes, the kanamycin- and neomycin-based antibiotics. In this paper, we present the crystal structure of a promiscuous AGME, aminoglycoside-N3-acetyltransferase-IIIb (AAC-IIIb), in the apo form, in binary drug (sisomicin, neomycin, and paromomycin) and coenzyme A (CoASH) complexes, and in the ternary neomycin?CoASH complex. These data provide a structural framework for interpretation of the thermodynamics of enzyme?ligand interactions and the role of solvent in the recognition of ligands. In combination with the recent structure of an AGME that does not have broad substrate specificity, these structures allow for the direct determination of how antibiotic promiscuity is encoded in some AGMEs.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH