Optimized Extraction Method To Remove Humic Acid Interferences from Soil Samples Prior to Microbial Proteome Measurements [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 577.3 Forest ecology

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2017

Mô tả vật lý: Size: p. 2537-2546 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 260513

 The microbial composition and their activities in soil environments play a critical role in organic matter transformation and nutrient cycling, perhaps most specifically with respect to impact on plant growth but also more broadly to global impact on carbon and nitrogen-cycling. Liquid chromatography coupled to high performance mass spectrometry provides a powerful approach to characterize soil microbiomes
  however, the limited microbial biomass and the presence of abundant interferences in soil samples present major challenges to soil proteome extraction and subsequent MS measurement. To address some of the major issues, we have designed and optimized an experimental method to enhance microbial proteome extraction concomitant with minimizing the soil-borne humic substances co-extraction from soils. Among the range of interferences, humic substances are often the worst in terms of adversely impacting proteome extraction and mass spectrometry measurement. Our approach employs an in-situ detergent-based microbial lysis / TCA precipitation coupled with an additional acidification precipitation step at the peptide level which efficiently removes humic acids. By combing filtration and pH adjustment of the final peptide solution, the remaining humic acids can be differentially precipitated and removed with a membrane filter, thereby leaving much cleaner proteolytic peptide samples for MS measurement. As a result, this modified method is a reliable and straight-forward protein extraction method that efficiently removes soil-borne humic substances without inducing proteome sample loss or reducing or biasing protein identification in mass spectrometry.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH