Drebrin-mediated microtubule?actomyosin coupling steers cerebellar granule neuron nucleokinesis and migration pathway selection [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 571.6 Cell biology

Thông tin xuất bản: Oak Ridge, Tenn. : Oak Ridge, Tenn. : Oak Ridge National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2017

Mô tả vật lý: Size: Article No. 14484 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 260566

Neuronal migration from a germinal zone to a final laminar position is essential for the morphogenesis of neuronal circuits. While it is hypothesized that microtubule?actomyosin crosstalk is required for a neuron?s ?two-stroke? nucleokinesis cycle, the molecular mechanisms controlling such crosstalk are not defined. By using the drebrin microtubule?actin crosslinking protein as an entry point into the cerebellar granule neuron system in combination with super-resolution microscopy, we investigate how these cytoskeletal systems interface during migration. Lattice light-sheet and structured illumination microscopy reveal a proximal leading process nanoscale architecture wherein f-actin and drebrin intervene between microtubules and the plasma membrane. Functional perturbations of drebrin demonstrate that proximal leading process microtubule?actomyosin coupling steers the direction of centrosome and somal migration, as well as the switch from tangential to radial migration. Finally, the Siah2 E3 ubiquitin ligase antagonizes drebrin function, suggesting a model for control of the microtubule?actomyosin interfaces during neuronal differentiation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH