Saccharification of newspaper waste after ammonia fiber expansion or extractive ammonia [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 502.3 Miscellany

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

Mô tả vật lý: Size: 10 p. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 260956

 Here, the lignocellulosic fractions of municipal solid waste (MSW) can be used as renewable resources due to the widespread availability, predictable and low pricing and suitability for most conversion technologies. In particular, after the typical paper recycling loop, the newspaper waste (NW) could be further valorized as feedstock in biorefinering industry since it still contains up to 70 % polysaccharides. In this study, two different physicochemical methods? ammonia fiber expansion (AFEX) and extractive ammonia (EA) were tested for the pretraetment of NW. Furthermore, based on the previously demonstrated ability of the recombinant enzymes endocellulase rCelStrep, ?-larabinofuranosidase rPoAbf and its evolved variant rPoAbf F435Y/Y446F to improve the saccharification of different lignocellulosic pretreated biomasses (such as corn stover and <
 i>
 Arundo donax<
 /i>
 ), in this study these enzymes were tested for the hydrolysis of pretreated NW, with the aim of valorizing the lignocellulosic fractions of the MSW. In particular, a mixture of purified enzymes containing cellulases, xylanases and accessory hemicellulases, was chosen as reference mix and rCelStrep and rPoAbf or its variant were replaced to EGI and Larb. The results showed that these enzymatic mixes are not suitable for the hydrolysis of NW after AFEX or EA pretreatment. On the other hand, when the enzymes rCelStrep, rPoAbf and rPoAbf F435Y/Y446F were tested for their effect in hydrolysis of pretreated NW by addition to a commercial enzyme mixture, it was shown that the total polysaccharides conversion yield reached 37.32 % for AFEX pretreated NW by adding rPoAbf to the mix whilst the maximum sugars conversion yield for EA pretreated NW was achieved 40.80 % by adding rCelStrep. The maximum glucan conversion yield obtained (45.61 % for EA pretreated NW by adding rCelStrep to the commercial mix) is higher than or comparable to those reported in recent manuscripts adopting hydrolysis conditions similar to those used in this study.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH