Physical and biological regulation of neuron regenerative growth and�network formation on recombinant dragline silks [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 612.6 Reproduction, development, maturation

Thông tin xuất bản: Bethesda, Md. : Oak Ridge, Tenn. : National Institutes of Health (U.S.) ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2015

Mô tả vật lý: Size: p. 137-146 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 261224

In this paper, recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. Finally, this dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH