Building a genome engineering toolbox in nonmodel prokaryotic microbes [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.48 Nuclear engineering

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2018

Mô tả vật lý: Size: p. 2120-2138 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 262983

The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g. sunlight, CO2, non-food biomass) to biofuels and bioproducts at sufficient titers and costs. For model microbes such as E. coli, advances in DNA reading and writing technologies are driving adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks such as photosynthesis, autotrophic growth, and cellulose degradation have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to begin to develop ?design rules? for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and available genetic tools to expand our ability to genetically engineer non-model systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH