Temperature-dependent phase behaviour of tetrahydrofuran?water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.856 Applied physics

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2018

Mô tả vật lý: Size: p. 1612-1620 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 263042

Xylose, Xylan, Hemicellulose, CELF, THF, Co-solvent, Pretreatment, Biomass ABSTRACT: Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidences, we reveal how the unique temperature-dependent phase behaviour of water-tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ?good? solvents for xylan. Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF-water is dependent on the temperature-phase behaviour. At temperatures between 333K and 418K, THF and water become immiscible, and THF is evacuated from the solvation shell of xylan, while above and below this temperature range, THF and water are both present in the polysaccharide?s solvation shell. This suggested that the solubilization of xylan in THF-water may be similar to aqueous-only solutions at temperatures between 333K and 418K and different outside this range. Experimental reactions on beachwood xylan corroborate this hypothesis by demonstrating 2-fold reduction of xylan solubilization in THF-water within a miscible temperature regime (445K) and unchanged solubilization within an immiscible regime (400K). Translating this phase-dependent behaviour to processing of maple wood chips, we demonstrate how the weaker xylan solvation in THF-water under miscible conditions can delay furfural production from xylose, allowing 5-HMF production from cellulose to ?catch-up? such that their high yield production from biomass can be synergized in a single pot reaction.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH