Data from [electronic resource] : Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 333.95 Biological resources

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 263214

 We examined relative changes in soil C pools shortly after the establishment of six perennial and two annual bioenergy cropping systems that differed in diversity (monoculture vs. polyculture). Perennial systems included two monocultures (switchgrass, Panicum virgatum
  and miscanthus, Miscanthus � giganteus) and four polycultures including hybrid poplar (Populus sp.) + herbaceous understory
  mixed native grasses, successional vegetation, and restored prairie. Two annual systems included no-till continuous corn (Zea mays) and rotational corn (corn-soybean (Glycine max)-canola (Brassica napus)). Each crop was planted in a full factorial design at both a moderate fertility Alfisol and a high fertility Mollisol site. Relative differences in active, slow, and passive C pools in surface soils, where C changes are most likely to be detected early, were evaluated with 322-day laboratory incubations followed by acid hydrolysis to infer different pools from exponential decay curves. Five years post-establishment, active C pools under perennial polycultures at the Alfisol site were up to twice those under annual and perennial monocultures, and followed the order hybrid poplars (696 � 216 ?g C g? 1 soil, n = 5 replicate blocks) ? native grasses (656 � 155) ? restored prairie (638 � 44) >
  early successional (500 � 54) ? continuous corn (237 � 68) ? rotational corn (180 � n.a.). Active C pools in perennial monocultures were similar to those in continuous corn: switchgrass (274 � 29) ? miscanthus (299 � 9). In contrast, differences in active C pools among crops at the more fertile Mollisol site were not detectable except for greater pools in the restored prairie and rotational corn systems. At both sites, slow and passive C pools differed little among systems except that slow pools were greater in the poplar system. That diversity rather than perenniality itself led to greater active C pools suggests that polycultures might be used to accelerate soil C accumulation in bioenergy and other perennial cropping systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH