On the global limits of bioenergy and land use for climate change mitigation [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 664.8 Fruits and vegetables

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2017

Mô tả vật lý: Size: p. 1721-1735 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 263230

 Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year<
 sup>
 -1<
 /sup>
  and 360 EJ year<
 sup>
 -1<
 /sup>
 , globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture, forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO<
 sub>
 2<
 /sub>
 eq year-1 to as low as minus 21 GtCO<
 sub>
 2<
 /sub>
 eq year<
 sup>
 -1<
 /sup>
 , which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH