Computational Insights into Fuels and Chemicals Extraction from Microbial Biorefineries [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 631.5 Cultivation and harvesting

Thông tin xuất bản: Golden, Colo. : Oak Ridge, Tenn. : National Renewable Energy Laboratory (U.S.) ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: 2.9 MB : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 264189

Over the past two decades, substantial investments have been made in engineering microorganisms to produce specific fuels and chemicals as part of the global bioeconomy. Many target molecules accumulate intracellularly, and a challenge is how to effectively extract the product from the cells without needing to destroy them due to the barrier imposed by the cell membrane. For some hydrophobic compounds, an organic overlay is an effective strategy for nondestructive product extraction, although the relationship between functional groups on the product and the rate of extraction are not well understood. Through both biased and unbiased molecular dynamics simulations for a range of fatty acyl compounds and terpenoids, we directly compute permeability coefficients for different steps of the extraction process. Via comparative analysis between the calculated permeability coefficients and observed interactions between the compounds and the membrane, we determine how the rate limiting steps vary depending on product chemistry. For instance, fatty aldehydes are found to transfer very rapidly across the membrane bilayer relative to alcohols, although their comparable rate of extraction into the organic phase makes them equally effective at extraction from the cell. In assessing the terpenoids, it is found that in general a modestly hydrophilic product improves desorption rates into an organic phase sufficiently to make up for their lower bilayer crossing rate. With this new insight, we can more effectively engineer microorganisms towards the production of these modestly hydrophilic fuel precursors or chemicals.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH