Development of Pollution Prevention Technologies [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 666.9 Masonry adhesives

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2013

Mô tả vật lý: Size: 18 p. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 265010

This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies. Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts for reactions of relevance to the manufacture of cleaner fossil fuels and biodiesel, and to hydrogen storage in organic liquids. Specifically the catalysts are highly active in the hydrogenation of aromatic and heteroaromatic components of fossil fuels, the reduction of unsaturated C=C bonds in biodiesel, and the dehydrogenation of nitrogen heterocycles. In the course of our studies we identified a novel dual-site substrate-dependent hydrogenation mechanism that explains the activity and selectivity data obtained and the resistance of the new catalysts to poisoning. These results represent an important advance in basic catalytic science, regarding design and synthesis and reaction mechanisms. Additionally, this project allowed the enhancement of the laboratory facilities in the Chemistry Department of Brooklyn College for catalysis and energy research, and served as an excellent vehicle for the training of several young researchers at the undergraduate, graduate and postdoctoral level, to join the national scientific workforce.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH