Deep learning-based model for progress variable dissipation rate in turbulent premixed flames [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 629.2 Motor land vehicles, cycles

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: p. 2929-2938 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 265745

A deep neural network (DNN) based large eddy simulation (LES) model for progress variable dissipation rate in turbulent premixed flames is presented. The DNN model is trained using filtered data from direct numerical simulations (DNS) of statistically planar turbulent premixed flames with n-heptane as fuel. Training data was comprised of flames with varying turbulence levels leading to a range of Karlovitz numbers. Through a-priori tests the DNN model is shown to predict the subfilter contribution to progress variable dissipation rate accurately over a range of filter widths and for all Karlovitz numbers examined in this study. Superior performance of the DNN model relative to an established physics-based model is also demonstrated. Additionally, transferability of the DNN model is highlighted by a-priori evaluation of the model using filtered DNS data from multiple cases with different Karlovitz numbers and fuel species than those that were used for training the model.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH