Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning [electronic resource] : A Methodological Approach

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 623.2 Mine laying and clearance, demolition

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: Article No. 022306 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 265747

 Gasoline compression ignition (GCI) engines are considered an attractive alternative to traditional spark-ignition and diesel engines. Here, a Machine Learning-Grid Gradient Ascent (ML-GGA) approach was developed to optimize the performance of internal combustion engines. ML offers a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. The developed ML-GGA model was compared with a recently developed Machine Learning-Genetic Algorithm (ML-GA). Detailed investigations of optimization solver parameters and variable limit extension were performed in the present ML-GGA model to improve the accuracy and robustness of the optimization process. Detailed descriptions of the different procedures, optimization tools, and criteria that must be followed for a successful output are provided here. The developed ML-GGA approach was used to optimize the operating conditions (case 1) and the piston bowl design (case 2) of a heavy-duty diesel engine running on a gasoline fuel with a research octane number (RON) of 80. The ML-GGA approach yielded >
 2% improvements in the merit function, compared with the optimum obtained from a thorough computational fluid dynamics (CFD) guided system optimization. The predictions from the ML-GGA approach were validated with engine CFD simulations. This study demonstrates the potential of ML-GGA to significantly reduce the time needed for optimization problems, without loss in accuracy compared with traditional approaches.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH