Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 629.892 Robots

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: p. 29-41 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 265799

Intentionally inducing worst-case thermal runaway scenarios in Li-ion cells on-demand is a definitive way to test the efficacy of battery systems in safely mitigating the consequences of catastrophic failure. An internal short-circuiting (ISC) device is implanted into three 18650 cell designs: one standard, one with a bottom vent, and one with a thicker casing. Through an extensive study of 228 cells, the position at which thermal runaway initiates is shown to greatly affect the tendency of cells to rupture and incur side-wall breaches at specific locations. The risks associated with each failure mechanism and position of the ISC device are quantified using a custom calorimeter that can decouple the heat from ejected and non-ejected contents. Furthermore the causes of high-risk failure mechanisms, such as bursting and side-wall breaches, are elucidated using high-speed synchrotron X-ray imaging at 2000 frames per second and image-based 3D thermal runaway computational models, which together are used to construct a comprehensive description of external risks based on internal structural and thermal phenomena.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH