Impacts of Integrating Topology Reconfiguration and Vehicle-to-Grid Technologies on Distribution System Operation [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.43 Internal-combustion engines

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2020

Mô tả vật lý: Size: p. 1023-1032 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266205

Autonomous electric vehicles (AEVs) provide unique opportunities to cope with the uncertainties of distributed energy generation in distribution networks. But the effects are limited by both inherent radial topology and the behaviors of decentralized AEVs. As such, we investigate the potential benefits of dynamic distribution network reconfiguration (DDNR), taking into account AEVs' spatial-temporal availability and their charging demand. We propose a mixed integer programming model to optimally coordinate the charging/discharging of AEVs with DDNR, while satisfying AEVs' original travel plan. Numerical studies based on a test system overlaying the IEEE 33-node test feeder and Sioux Falls transportation network show that DDNR and AEV complement each other, which improves the operation of the distribution system. We also conduct sensitivity analyses on inputs including renewable fluctuation and AEVs penetration level.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH