Efficient Simulation and Abuse Modeling of Mechanical-Electrochemical-Thermal Phenomena in Li-Ion Batteries [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.312 Generation, modification, storage

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: 904 KB : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266304

This poster covered simultaneous coupling of electrochemical-thermal models with mechanical deformation in lithium ion batteries. Efficiency and stability of mechanical models was significantly enhanced by implementing electrochemical models into LS-DYNA using User-Defined Elements. Six case studies were built and licensed out to participants from Industry for initial testing and their feedback is being incorporated into these tools. Dynamic response of the cells was incorporated by measuring mechanical response of components at strain rates as high as 250 /s. Temperature range for property measurements was expanded (as high as 200 degrees C) to account for property changes at high temperatures experienced by cell components under battery abuse. Multi-cell validation has been expanded to include four different sets of experimental data, with support from various partners. Complex failure modes and fracture response are currently being investigated. These are still very challenging, given the limited amount of prior work available in the literature.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH