Assessment of NHTSA?s Report ?Relationships Between Fatality Risk, Mass, and Footprint in Model Year 2003-2010 Passenger Cars and LTVs? [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 629.222 Passenger automobiles

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

Mô tả vật lý: Size: 108 p. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 266761

 NHTSA recently completed a logistic regression analysis updating its 2003, 2010, and 2012 studies of the relationship between vehicle mass and US fatality risk per vehicle mile traveled (VMT
  Kahane 2010, Kahane 2012, Puckett 2016). The new study updates the 2012 analysis using FARS data from 2005 to 2011 for model year 2003 to 2010. Using the updated databases, NHTSA estimates that reducing vehicle mass by 100 pounds while holding footprint fixed would increase fatality risk per VMT by 1.49% for lighter-than-average cars and by 0.50% for heavierthan- average cars, but reduce risk by 0.10% for lighter-than-average light-duty trucks, by 0.71% for heavier-than-average light-duty trucks, and by 0.99% for CUVs/minivans. Using a jack knife method to estimate the statistical uncertainty of these point estimates, NHTSA finds that none of these estimates are statistically significant at the 95% confidence level
  however, the 1.49% increase in risk associated with mass reduction in lighter-than-average cars, and the 0.71% and 0.99% decreases in risk associated with mass reduction in heavier-than-average light trucks and CUVs/minivans, are statistically significant at the 90% confidence interval. The effect of mass reduction on risk that NHTSA estimated in 2016 is more beneficial than in its 2012 study, particularly for light trucks and CUVs/minivans. The 2016 NHTSA analysis estimates that reducing vehicle footprint by one square foot while holding mass constant would increase fatality risk per VMT by 0.28% in cars, by 0.38% in light trucks, and by 1.18% in CUVs and minivans.This report replicates the 2016 NHTSA analysis, and reproduces their main results. This report uses the confidence intervals output by the logistic regression models, which are smaller than the intervals NHTSA estimated using a jack-knife technique that accounts for the sampling error in the FARS fatality and state crash data. In addition to reproducing the NHTSA results, this report also examines the NHTSA data in slightly different ways to get a deeper understanding of the relationship between vehicle weight, footprint, and safety. The results of the NHTSA baseline results, and these alternative analyses, are summarized in Table ES.1
  statistically significant estimates, based on the confidence intervals output by the logistic regression models, are shown in red in the tables. We found that NHTSA?s reasonable assumption that all vehicles will have ESC installed by 2017 in its baseline regression model slightly increases the estimated increase in risk from mass reduction in cars, but substantially decreases the estimated increase in risk from footprint reduction in all three vehicle types (Alternative 1 in Table ES.1
  explained in more detail in Section 2.1 of this report). This is because NHTSA projects ESC to substantially reduce the number of fatalities in rollovers and crashes with stationary objects, and mass reduction appears to reduce risk, while footprint reduction appears to increase risk, in these types of crashes, particularly in cars and CUVs/minivans. A single regression model including all crash types results in slightly different estimates of the relationship between decreasing mass and risk, as shown in Alternative 2 in Table ES.1.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH