Ultrafast and Controllable Phase Evolution by Flash Joule Heating [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 338.2 Extraction of minerals

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy for Fossil Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2021

Mô tả vật lý: Size: p. 11158?11167 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 267677

Flash Joule heating (FJH), an advanced material synthesis technique, has been used for the production of high-quality carbon materials. Direct current discharge through the precursors by large capacitors has successfully converted carbon-based starting materials into bulk quantities of turbostratic graphene by the FJH process. However, the formation of other carbon allotropes, such as nanodiamonds and concentric carbon materials, as well as the covalent functionalization of different carbon allotropes by the FJH process, remains challenging. Here, we report the solvent-free FJH synthesis of three different fluorinated carbon allotropes: fluorinated nanodiamonds, fluorinated turbostratic graphene and fluorinated concentric carbon. This is done by millisecond flashing of organic fluorine compounds and fluoride precursors. Spectroscopic analysis confirms the modification of the electronic states and the existence of various short-range and long-range orders in the different fluorinated carbon allotropes. As a result, the flash time-dependent relationship is further demonstrated to control the phase evolution and product compositions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH