Vulnerability of existing and planned coal-fired power plants in Developing Asia to changes in climate and water resources [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 333.7 Land, recreational and wilderness areas, energy

Thông tin xuất bản: Oak Ridge, Tenn. : Oak Ridge, Tenn. : Oak Ridge National Laboratory ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: p. 3164-3181 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 267706

 Coal power generation dominates electricity supply in Developing Asia, and more than 400 gigawatts (GW) of new coal-fired capacity is planned for operation by 2030. Past studies on thermal electricity-water nexus have not accounted for this new capacity, and use coarse spatial and temporal resolutions in the assessment of long-term power system reliability. Here, high-resolution hydro-climatic simulations and asset-level power plant water use models are integrated to quantify water constraints on coal-fired power plants in Developing Asia, for different scenarios of future climate change, cooling system choice, and capacity expansion. Future climate change and capacity expansion decrease the annual usable capacity factor (UF) of coal power generation in Mongolia, Southeast Asia, and parts of India and China. The negative impacts are lessened by widening the geographic areas of aggregation. Under near-term mitigation scenarios with high penetrations of CO<
 sub>
 2<
 /sub>
  capture technology, the regional average water withdrawal intensity of coal power generation is 50?80% higher than current conditions. With careful siting, the increased water withdrawal intensity does not necessarily constrain future electricity production on annual or monthly time scales, but decreases system reliability by increasing the probability of low UF at daily time scale. Our findings highlight the unaccounted-for-risk in Developing Asia's long-term power plan featuring coal power generation. Regional capacity expansion should consider the reliability of future thermal power assets under long-term hydroclimate change using high-resolution models and multiple scenarios.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH