Development of a first-principles hybrid boiler model for oxy-combustion power generation system [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.45 Wind engines

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Office of the Assistant Secretary of Energy for Fossil Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

Mô tả vật lý: Size: p. 136-157 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 267791

 The design of an oxy-combustion system for CO<
 sub>
 2<
 /sub>
  capture involves the integration of multiple devices including air separation unit, coal-fired boiler, steam turbine, flue gas cleanup, recycle, and compression units. Thousands of design parameters for the entire system need to be optimized to achieve the lowest cost per kilowatt-hour of electricity generated. An appropriate first-principles based boiler model with short computer execution time but yet reasonable accuracy in both air-fired and oxy-fired configurations is highly desired. To this end, a hybrid boiler model with 1-D resolution for main flow and reaction related calculations and 3-D resolution for radiative heat transfer was developed as a part of the oxy-combustion subtask of the Carbon Capture and Simulation Initiative (CCSI) sponsored by U.S. Department of Energy. Furthermore, the developed model is able to automatically generate a 3-D mesh based on user-specified furnace shape for the calculation of radiative heat transfer using discrete ordinates method.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH