In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology.

Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties.

The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and going on to describe bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines.

Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics departments in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience.

An additional chapter on synchronization, with more advanced material, can be found at the author’s website, www.izhikevich.com.

Eugene M. Izhikevich is Senior Fellow in Theoretical Neurobiology at the Neurosciences Institute, San Diego, coauthor of Weakly Conducted Neural Networks, and editor-in-chief of Scholarpedia, the free peer-reviewed encyclopedia.
Dynamical Systems in Neuroscience
Computational Neuroscience
Terrence J. Sejnowski and Tomaso A. Poggio, editors

Neural Nets in Electric Fish, Walter Heiligenberg, 1991

The Computational Brain, Patricia S. Churchland and Terrence J. Sejnowski, 1992

Dynamic Biological Networks: The Stomachgastric Nervous System, edited by Ronald M. Harris-Warrick, Eve Marder, Allen I. Selverston, and Maurice Maulins, 1992

The Neurobiology of Neural Networks, edited by Daniel Gardner, 1993

Large-Scale Neuronal Theories of the Brain, edited by Christof Koch and Joel L. Davis, 1994

Spikes: Exploring the Neural Code, Fred Rieke, David Warland, Rob de Ruyter van Stevenick, and William Bialek, 1997

Neural Codes and Distributed Representations: Foundations of Neural Computation, edited by Laurence Abbott and Terrence J. Sejnowski, 1999

Fast Oscillations in Cortical Circuits, Roger D. Traub, John G.R. Jefferys, and Miles Al Whittington, 1999

The Computational Neurobiology of Reaching and Pointing, edited by Reza Shadmehr and Steven P. Wise, 2005

Dynamical Systems in Neuroscience:
The Geometry of Excitability and Bursting

Eugene M. Izhikevich

The MIT Press
Cambridge, Massachusetts
London, England
To my beautiful daughters, Liz and Kate.
Contents

1 Introduction 1
 1.1 Neurons 1
 1.1.1 What Is a Spike? 2
 1.1.2 Where Is the Threshold? 3
 1.1.3 Why Are Neurons Different, and Why Do We Care?.. 6
 1.1.4 Building Models 6
 1.2 Dynamical Systems 8
 1.2.1 Phase Portraits 8
 1.2.2 Bifurcations 11
 1.2.3 Hodgkin Classification 14
 1.2.4 Neurocomputational properties 16
 1.2.5 Building Models (Revisited) 20
 Review of Important Concepts 21
 Bibliographical Notes 21

2 Electrophysiology of Neurons 25
 2.1 Ions 25
 2.1.1 Nernst Potential 26
 2.1.2 Ionic Currents and Conductances . 27
 2.1.3 Equivalent Circuit 28
 2.1.4 Resting Potential and Input Resistance 29
 2.1.5 Voltage-Clamp and I-V Relation 30
 2.2 Conductances 32
 2.2.1 Voltage-Gated Channels 33
 2.2.2 Activation of Persistent Currents .. 34
 2.2.3 Inactivation of Transient Currents . 35
 2.2.4 Hyperpolarization-Activated Channels 36
 2.3 The Hodgkin-Huxley Model 37
 2.3.1 Hodgkin-Huxley Equations 37
 2.3.2 Action Potential 41
 2.3.3 Propagation of the Action Potentials .. 42
3 One-Dimensional Systems
3.1 Electrophysiological Examples 53
 3.1.1 I-V Relations and Dynamics 54
 3.1.2 Leak + Instantaneous $I_{Na,p}$ 55
3.2 Dynamical Systems ... 57
 3.2.1 Geometrical Analysis .. 59
 3.2.2 Equilibria .. 60
 3.2.3 Stability .. 60
 3.2.4 Eigenvalues .. 61
 3.2.5 Unstable Equilibria ... 61
 3.2.6 Attraction Domain .. 62
 3.2.7 Threshold and Action Potential 63
 3.2.8 Bistability and Hysteresis 66
3.3 Phase Portraits .. 67
 3.3.1 Topological Equivalence 68
 3.3.2 Local Equivalence and the Hartman-Grobman Theorem 69
 3.3.3 Bifurcations .. 70
 3.3.4 Saddle-Node (Fold) Bifurcation 74
 3.3.5 Slow Transition .. 75
 3.3.6 Bifurcation Diagram .. 77
 3.3.7 Bifurcations and I-V Relations 77
 3.3.8 Quadratic Integrate-and-Fire Neuron 80
3.4 Review of Important Concepts 82
3.5 Bibliographical Notes ... 83
3.6 Exercises ... 83

4 Two-Dimensional Systems
4.1 Planar Vector Fields .. 89
 4.1.1 Nullclines .. 92
 4.1.2 Trajectories .. 94
 4.1.3 Limit Cycles .. 96
 4.1.4 Relaxation Oscillators 98
4.2 Equilibria ... 99
 4.2.1 Stability .. 100
 4.2.2 Local Linear Analysis 101
 4.2.3 Eigenvalues and Eigenvectors 102
 4.2.4 Local Equivalence .. 103
CONTENTS

4.2.5 Classification of Equilibria 103
4.2.6 Example: FitzHugh-Nagumo Model 106
4.3 Phase Portraits .. 108
 4.3.1 Bistability and Attraction Domains 108
 4.3.2 Stable/Unstable Manifolds 109
 4.3.3 Homoclinic/Heteroclinic Trajectories 111
 4.3.4 Saddle-Node Bifurcation 113
 4.3.5 Andronov-Hopf Bifurcation 116

Review of Important Concepts 121
Bibliographical Notes ... 122
Exercises .. 122

5 Conductance-Based Models and Their Reductions 127
 5.1 Minimal Models ... 127
 5.1.1 Amplifying and Resonant Gating Variables 129
 5.1.2 $I_{Na,p}+I_{K}$-Model 132
 5.1.3 $I_{Na,i}$-model ... 133
 5.1.4 $I_{Na,p}+I_{h}$-Model 136
 5.1.5 $I_{h}+I_{Kir}$-Model 138
 5.1.6 $I_{K}+I_{Kir}$-Model 140
 5.1.7 I_{A}-Model .. 142
 5.1.8 Ca^{2+}-Gated Minimal Models 147
 5.2 Reduction of Multidimensional Models 147
 5.2.1 Hodgkin-Huxley model 147
 5.2.2 Equivalent Potentials 151
 5.2.3 Nullclines and I-V Relations 151
 5.2.4 Reduction to Simple Model 153

Review of Important Concepts 156
Bibliographical Notes ... 156
Exercises .. 157

6 Bifurcations 159
 6.1 Equilibrium (Rest State) 159
 6.1.1 Saddle-Node (Fold) 162
 6.1.2 Saddle-Node on Invariant Circle 164
 6.1.3 Supercritical Andronov-Hopf 168
 6.1.4 Subcritical Andronov-Hopf 174
 6.2 Limit Cycle (Spiking State) 178
 6.2.1 Saddle-Node on Invariant Circle 180
 6.2.2 Supercritical Andronov-Hopf 181
 6.2.3 Fold Limit Cycle 181
 6.2.4 Homoclinic .. 185
 6.3 Other Interesting Cases 190