Freshwater Microbiology

Biodiversity and Dynamic Interactions of Microorganisms in the Aquatic Environment

David C. Sigee

University of Manchester, UK
Contents

Preface xvi

Copyright acknowledgements xix

1 Microbial diversity and freshwater ecosystems

1.1 General introduction
 1.1.1 The aquatic existence
 1.1.2 The global water supply – limnology and oceanography
 1.1.3 Freshwater systems: some terms and definitions
 1.1.4 The biology of freshwater microorganisms

A. **BIOLOGICAL DIVERSITY IN THE FRESHWATER ENVIRONMENT**

1.2 Biodiversity of microorganisms
 1.2.1 Domains of life
 1.2.2 Size range
 1.2.3 Autotrophs and heterotrophs
 1.2.4 Planktonic and benthic microorganisms
 1.2.5 Metabolically active and inactive states
 1.2.6 Evolutionary strategies: r-selected and K-selected organisms

1.3 Biodiversity in ecosystems, communities, and species populations
 1.3.1 Main ecosystems
 1.3.2 Diversity within subsidiary communities
 1.3.3 Biodiversity within single-species populations

B. **ECOSYSTEMS**

1.4 The biofilm community: a small-scale freshwater ecosystem
 1.4.1 Interactions between microorganisms
 1.4.2 Biomass formation and transfer
 1.4.3 Maintenance of the internal environment
 1.4.4 Interactions with the external environment

1.5 The pelagic ecosystem: a large-scale unit within the lake environment
 1.5.1 Interactions between organisms
 1.5.2 Trophic connections and biomass transfer
 1.5.3 Maintenance of the internal environment
 1.5.4 Interactions with the external environment

1.6 Homeostasis and ecosystem stability
 1.6.1 Stress factors
 1.6.2 General theoretical predictions: the community response
 1.6.3 Observed stress responses: from molecules to communities
2 Freshwater environments: the influence of physico-chemical conditions on microbial communities

A. INTRODUCTION

2.1 The aquatic medium: water, dissolved and particulate components

2.1.1 Particulate matter

2.1.2 Aquatic matrix

2.2 Freshwater environments

B. LAKES

2.3 Lake morphology and hydrology

2.3.1 Lake morphology

2.3.2 Lake hydrology and the surrounding terrestrial environment

2.4 Lakes as isolated environments

2.4.1 Isolated development

2.4.2 Lake Baikal: an ancient lake with a diverse and unique fauna and flora

2.5 Climatic influences on lakes

2.5.1 Temperate lakes – seasonal variations and lake stratification

2.5.2 Biological significance of stratification

2.5.3 Tropical lakes

2.5.4 Polar and sub-polar lakes

C. WETLANDS

2.6 General characteristics

2.6.1 Wetland diversity and global scale

2.6.2 Unifying features of wetlands

2.6.3 The role of wetlands in energy and material flow

2.7 Wetland habitats and communities

2.8 Case studies on wetland areas

CASE STUDY 2.1 TŘEBOŇ BASIN BIOSPHERE RESERVE

D. STREAMS AND RIVERS

2.9 Comparison of lotic and lentic systems

2.10 River flow and the benthic community

2.10.1 Flow characteristics of lotic systems

2.10.2 Influence of water flow on benthic microorganisms

2.11 River hydrology

E. ESTUARIES

2.12 River inflow: water mixing, estuarine productivity, and eutrophication of coastal areas
2.12.1 Mixing of fresh and saltwaters 80
2.12.2 High productivity of estuarine systems 81
2.12.3 Eutrophication of surrounding coastal areas 82

2.13 Habitats and communities 82
2.13.1 Pelagic zone 82
2.13.2 Sediments and mudflats 82

F. ADVERSE AND EXTREME CONDITIONS IN FRESHWATER ENVIRONMENTS 84
2.14 Adverse conditions as part of the environmental continuum 85
2.14.1 Variations in oxygen concentration 85
2.14.2 Nutrient availability 85
2.14.3 Solar radiation 86

2.15 Extreme environmental conditions 86
2.15.1 Temperature 86
2.15.2 pH 89
2.15.3 Conditions of low water availability: saline environments 91
2.15.4 Conditions of low water availability: ice and snow environments 92
2.15.5 Variations in hydrostatic pressure 93
2.15.6 Organic and inorganic pollution 93

2.16 A potentially extreme microenvironment: the air–water surface 95
2.16.1 Chemical composition of the surface microlayer 95
2.16.2 Physical processes and transformations in the surface biofilm 96
2.16.3 Microbial community at the air–water interface 98

2.17 Microbial communities of snow and ice: life in the frozen state 99
2.17.1 Snow and ice as an extreme environment 99
2.17.2 Requirement for water in the liquid state 99
2.17.3 Snow ecosystems 99
2.17.4 The physical properties of snow 100
2.17.5 Snow and ice microorganisms 102

3 Algae: the major microbial biomass in freshwater systems 105

A. TAXONOMIC AND MOLECULAR CHARACTERIZATION 107
3.1 Major taxonomic divisions of freshwater algae 107
3.1.1 Microscopical appearance, motility and ecological features 107
3.1.2 Biochemical and cytological characteristics 110
3.1.3 General summary of the different groups 112

3.2 Algal species: taxonomy and intraspecific variation 114
3.2.1 Taxonomy of algal species 114
3.2.2 Chemical diversity within species – enzyme analysis, molecular groups, and elemental composition 115

3.3 Molecular analysis 116
3.3.1 Molecular characterization and identification of algae 116
3.3.2 Investigation of gene function in freshwater algae 119

B. SIZE, SHAPE, AND SURFACE MUCILAGE 123
3.4 Phytoplankton size and shape 123
3.4.1 Cell counts and biovolume 123
3.4.2 From picoplankton to macroplankton 123
3.4.3 Biological significance of size and shape 124
3.4.4 Variation in size and shape within phytoplankton populations 128

3.5 Mucilaginous and non-mucilaginous algae 130
3.5.1 Chemical composition of mucilage 131
3.5.2 Role of mucilage in phytoplankton activities
3.5.3 Environmental impact and biogeochemical cycles

C. ACTIVITIES WITHIN THE FRESHWATER ENVIRONMENT

3.6 Benthic algae: interactions with planktonic algae and ecological significance
3.6.1 Planktonic and benthic algae
3.6.2 Lake periphyton
3.6.3 Benthic algae in flowing waters
3.6.4 Ecological role of benthic algae

3.7 Temporal activities of freshwater algae
3.7.1 Short-term changes: molecular and cellular processes
3.7.2 Medium-term changes: algal succession
3.7.3 Long-term changes: variations over a number of years

3.8 Phytoplankton distribution within the water column
CASE STUDY 3.1 VERTICAL ZONATION OF PHYTOPLANKTON IN A STRATIFIED LAKE
3.8.1 Active migration of algae
3.8.2 Passive movement of algae within the water column

3.9 Freshwater algae and nutrient status of the environment
3.9.1 Phytoplankton species composition and lake nutrient status
3.9.2 Nutrient status of river environments – effect on benthic algal biofilms

D. STRATEGIES FOR SURVIVAL

3.10 Strategies for survival: the planktonic environment
3.10.1 Meroplanktonic algae
3.10.2 Strategies for unstable and stable environments: r-selected and K-selected algae

3.11 Heterotrophic nutrition in freshwater algae
3.11.1 Organotrophy
3.11.2 Phagotrophy

3.12 Survival in snow and ice: adaptations of cryophilic algae
3.12.1 Major groups of cryophilic algae
3.12.2 Life cycles of snow algae
3.12.3 Physiological adaptations of snow algae

E. BIODIVERSITY IN THE ALGAL COMMUNITY

3.13 Variety of freshwater algae: indices of species diversity
3.13.1 The paradox of phytoplankton diversity
3.13.2 Biodiversity indices
3.13.3 Numerical comparison of phytoplankton populations
3.13.4 Biodiversity and ecosystem function

4 Competition for light

4.1 The light environment
4.1.1 Physical properties of light: terms and units of measurement
4.1.2 Light thresholds for biological activities
4.1.3 Light under water: refraction, absorption, and scattering
4.1.4 Light energy conversion: from lake surface to algal biomass

4.2 Photosynthetic processes in the freshwater environment
4.2.1 Light and dark reactions
4.2.2 Photosynthetic microorganisms
4.2.3 Measurement of photosynthesis
4.2.4 Photosynthetic response to varying light intensity

4.3 Light as a growth resource
4.3.1 Strategies for light uptake and utilization
4.3.2 Light–photosynthetic response in different algae
4.3.3 Conservation of energy 194
4.3.4 Diversity in small molecular weight solutes and osmoregulation 195

4.4 Algal growth and productivity 196
4.4.1 Primary production: concepts and terms 196
4.4.2 Primary production and algal biomass 197
4.4.3 Field measurements of primary productivity 197

4.5 Photosynthetic bacteria 199
4.5.1 Major groups 200
4.5.2 Photosynthetic pigments 200
4.5.3 Bacterial primary productivity 201

4.6 Photoadaptation: responses of aquatic algae to limited supplies of light energy 202
4.6.1 Different aspects of light limitation 203
4.6.2 Variable light intensity: light-responsive gene expression 204
4.6.3 Photosynthetic responses to low light intensity 205
4.6.4 Spectral composition of light: changes in pigment composition 209

4.7 Carbon uptake and excretion by algal cells 210
4.7.1 Changes in environmental CO₂ and pH 210
4.7.2 Excretion of dissolved organic carbon by phytoplankton cells 211

4.8 Competition for light and carbon dioxide between algae and higher plants 215
4.8.1 The balance between algae and macrophytes in different aquatic environments 215
CASE STUDY 4.1 COMPETITION BETWEEN ALGAE AND MACROPHYTES IN SHALLOW LAKES OF THE TŘEBÓN WETLANDS 216
4.8.2 Physiological and environmental adaptations in the competition between algae and macrophytes 218

4.9 Damaging effects of high levels of solar radiation: photoinhibition 221
4.9.1 Specific mechanisms of photoinhibition 221
4.9.2 General effects of photoinhibition 224
4.9.3 Strategies for the avoidance of photoinhibition 225
4.9.4 Photoinhibition and cell size 227
4.9.5 Lack of photoinhibition in benthic communities 228
4.9.6 Photoinhibition in extreme high-light environments 228

4.10 Periodic effects of light on seasonal and diurnal activities of freshwater biota 230
4.10.1 Seasonal periodicity 230
4.10.2 Diurnal changes 231
4.10.3 Circadian rhythms in blue-green algae 232
4.10.4 Circadian rhythms in dinoflagellates 234

5 Inorganic nutrients: uptake and cycling in freshwater systems 235

5.1 Chemical composition of natural waters 235
5.1.1 Soluble inorganic matter in lakes and rivers 235
5.1.2 Aerial deposition of nutrients 237
5.1.3 Nutrient inflow from terrestrial sources 237
5.1.4 Chemical requirements and composition of freshwater biota 238
CASE STUDY 5.1 ELEMENTAL COMPOSITION OF CERATIUM HIRUNDINELLA 240
5.1.5 Nutrient availability and cycling in aquatic systems 243

5.2 Nutrient uptake and growth kinetics 246
5.2.1 Empirical models for algal nutrient kinetics 246
5.2.2 Competition and growth in the aquatic environment 248
5.2.3 Nutrient availability and water movement 250
5.2.4 Acute nutrient deprivation as an environmental stress factor 251

A. NITROGEN 251

5.3 Biological availability of nitrogen in freshwater environments 251
5.3.1 Soluble nitrogenous compounds 251
5.4 The nitrogen cycle
5.4.1 Nitrate entry and uptake (soluble inorganic to insoluble organic nitrogen) 254
5.4.2 Complex organic nitrogen (biomass) transformations (successive states of insoluble organic nitrogen) 255
5.4.3 Remineralization (insoluble organic to soluble inorganic nitrogen) 255
5.4.4 Nitrification/denitrification (oxidation/reduction of soluble inorganic compounds) 255
5.5 Uptake of nitrate and ammonium ions by algae
5.5.1 Biochemical processes 257
5.5.2 Species variations in nitrate uptake 258
5.5.3 Environmental regulation of nitrate assimilation 258
5.5.4 Nitrogen uptake, CO₂ assimilation, and photosynthesis 259
5.6 Nitrogen fixation
5.6.1 Ecological significance of nitrogen fixation 260
5.6.2 The nitrogenase enzyme and strategies of fixation 260
5.6.3 Heterocysts: nitrogen fixation by colonial blue-green algae 261
5.6.4 Diurnal control of nitrogen fixation: unicellular blue-green algae 262
5.6.5 Anaerobic environment: nitrogen-fixing bacteria 263

B. PHOSPHORUS 265
5.7 Occurrence and biological availability of phosphorus
5.7.1 Phosphorus availability and limitation 265
5.7.2 The phosphorus cycle 266
5.8 Adaptations of freshwater microorganisms to low phosphorus concentrations
5.8.1 Kinetics of phosphorus uptake 269
5.8.2 Luxury consumption of phosphate 269
5.8.3 Secretion of alkaline phosphatase 271

C. SILICON: A WIDELY-AVAILABLE ELEMENT OF LIMITED METABOLIC IMPORTANCE 272
5.9 The silicon cycle 272
5.10 Silicon and diatoms
5.10.1 Si uptake and phytoplankton succession 274
5.10.2 Si uptake and cell-wall formation 275

D. TRACE ELEMENTS 279
5.11 Biological role of trace elements
5.11.1 Environmental uptake of trace elements 280
5.11.2 Stimulation of growth in aquatic environments 281
5.11.3 Importance of trace metals in the culture of aquatic algae 281
5.11.4 Biochemical roles of trace elements 282
5.12 Cycling of iron and other trace metals in the aquatic environment
5.12.1 The iron cycle 283
5.12.2 The manganese cycle 286

6 Bacteria: the main heterotrophic microorganisms in freshwater systems 287

A. GENERAL DIVERSITY WITHIN THE ENVIRONMENT 287
6.1 General diversity, habitat preferences, and ecological significance of freshwater bacteria
6.1.1 General diversity 287
6.1.2 Habitat preferences 288
6.1.3 Environmental significance of freshwater bacteria 290
6.2 Taxonomic, biochemical, and molecular characterization of freshwater bacteria
6.2.1 Species identification 291
6.2.2 Genetic markers: detection of particular strains in the aquatic environment 292
6.2.3 Biochemical characterization of bacterial communities 293
CASE STUDY 6.1 CHANGES IN BACTERIAL COMMUNITY FUNCTION AND COMPOSITION AS A RESPONSE TO VARIATIONS IN THE SUPPLY OF DISSOLVED ORGANIC MATERIAL (DOM) 293

B. GENETIC INTERACTIONS 294

6.3 Genetic diversity 294
6.3.1 Chromosomal and accessory DNA 294
6.3.2 The ecological importance of gene transfer in freshwater systems 295
6.3.3 Total genetic diversity: the 'community genome' 296

6.4 Mechanisms for gene transfer in freshwater systems 297
6.4.1 Transformation: uptake of exogenous DNA 297
6.4.2 Transduction: gene transfer between bacteria via bacteriophages 300
6.4.3 Conjugation: transfer of plasmid DNA by direct cell contact 300

6.5 Evidence for gene transfer in the aquatic environment 300
6.5.1 Retrospective analysis 300
CASE STUDY 6.2 PLASMID-BORNE RESISTANCE IN AQUATIC BACTERIA 301
6.5.2 Laboratory (in vitro) studies on plasmid transfer 301
CASE STUDY 6.3 PLASMID TRANSFER IN PSEUDOMONAS AERUGINOSA 302
6.5.3 Field (in situ) studies on bacterial gene transfer 303

C. METABOLIC ACTIVITIES 304

6.6 Metabolic diversity of freshwater bacteria 304
6.6.1 Key metabolic parameters 304
6.6.2 CO₂ fixation 304
6.6.3 Breakdown of organic matter in aerobic and anaerobic environments 305
6.6.4 Bacterial adaptations to low-nutrient environments 310

6.7 Photosynthetic bacteria 312
6.7.1 General characteristics 312
6.7.2 Motility 312
6.7.3 Ecology 314

6.8 Bacteria and inorganic cycles 314
6.8.1 Bacterial metabolism and the sulphur cycle 315

D. BACTERIAL POPULATIONS AND PRODUCTIVITY 316

6.9 Bacterial populations 316
6.9.1 Techniques for counting bacterial populations 316
6.9.2 Biological significance of total and viable counts 317

6.10 Bacterial productivity 318
6.10.1 Measurement of productivity 318
6.10.2 Regulation of bacterial populations and biomass 319
6.10.3 Primary and secondary productivity: correlation between bacterial and algal populations 320
6.10.4 Primary and secondary productivity: the role of dissolved organic carbon 321
6.10.5 Bacterial productivity and aquatic food webs 323

E. BACTERIAL COMMUNITIES IN THE LOTIC ENVIRONMENT 324

6.11 Bacterial Biofilms 324
6.11.1 The development of biofilms 324
6.11.2 Dynamic interactions in the establishment of biofilms: the role of bacterial co-aggregation 326
CASE STUDY 6.4 SPECIFIC RECOGNITION AND ADHESION AMONGST AQUATIC BIOFILM BACTERIA 326

F. BACTERIAL INTERACTIONS WITH PHYTOPLANKTON 328

6.12 Interactions between phytoplankton and planktonic bacteria 328
6.12.1 Competition for inorganic nutrients 328
6.12.2 Antagonistic interactions between bacteria and algae 329