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Introduction

Topology is an important and interesting area of mathematics, the study of

which will not only introduce you to new concepts and theorems but also put

into context old ones like continuous functions. However, to say just this is to

understate the significance of topology. It is so fundamental that its influence

is evident in almost every other branch of mathematics. This makes the study

of topology relevant to all who aspire to be mathematicians whether their

first love is (or will be) algebra, analysis, category theory, chaos, continuum

mechanics, dynamics, geometry, industrial mathematics, mathematical biology,

mathematical economics, mathematical finance, mathematical modelling,

mathematical physics, mathematics of communication, number theory,

numerical mathematics, operations research or statistics. Topological notions

like compactness, connectedness and denseness are as basic to mathematicians

of today as sets and functions were to those of last century.

Topology has several different branches — general topology (also known

as point-set topology), algebraic topology, differential topology and topological

algebra — the first, general topology, being the door to the study of the others.

We aim in this book to provide a thorough grounding in general topology.

Anyone who conscientiously studies about the first ten chapters and solves at

least half of the exercises will certainly have such a grounding.

For the reader who has not previously studied an axiomatic branch of

mathematics such as abstract algebra, learning to write proofs will be a hurdle.

To assist you to learn how to write proofs, quite often in the early chapters, we

include an aside which does not form part of the proof but outlines the thought

process which led to the proof. Asides are indicated in the following manner:

In order to arrive at the proof, we went through this thought process,

which might well be called the “discovery” or “experiment phase”.

However, the reader will learn that while discovery or experimentation

is often essential, nothing can replace a formal proof.
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iv INTRODUCTION

There are many exercises in this book. Only by working through a good

number of exercises will you master this course. Very often we include new

concepts in the exercises; the concepts which we consider most important will

generally be introduced again in the text.

Harder exercises are indicated by an *.
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Chapter 1

Topological Spaces

Introduction

Tennis, football, baseball and hockey may all be exciting games but to play

them you must first learn (some of) the rules of the game. Mathematics is no

different. So we begin with the rules for topology.

This chapter opens with the definition of a topology and is then devoted

to some simple examples: finite topological spaces, discrete spaces, indiscrete

spaces, and spaces with the finite-closed topology.

Topology, like other branches of pure mathematics such as group theory, is

an axiomatic subject. We start with a set of axioms and we use these axioms

to prove propositions and theorems. It is extremely important to develop your

skill at writing proofs.

Why are proofs so important? Suppose our task were to construct a

building. We would start with the foundations. In our case these are the

axioms or definitions – everything else is built upon them. Each theorem or

proposition represents a new level of knowledge and must be firmly anchored to

the previous level. We attach the new level to the previous one using a proof.

So the theorems and propositions are the new heights of knowledge we achieve,

while the proofs are essential as they are the mortar which attaches them to

the level below. Without proofs the structure would collapse.

So what is a mathematical proof? A mathematical proof is a watertight

argument which begins with information you are given, proceeds by logical

argument, and ends with what you are asked to prove.
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2 CHAPTER 1. TOPOLOGICAL SPACES

You should begin a proof by writing down the information you are given

and then state what you are asked to prove. If the information you are given or

what you are required to prove contains technical terms, then you should write

down the definitions of those technical terms.

Every proof should consist of complete sentences. Each of these sentences

should be a consequence of (i) what has been stated previously or (ii) a theorem,

proposition or lemma that has already been proved.

In this book you will see many proofs, but note that mathematics is not a

spectator sport. It is a game for participants. The only way to learn to write

proofs is to try to write them yourself.

1.1 Topology

1.1.1 Definitions. Let X be a non-empty set. A collection τ of

subsets of X is said to be a topology on X if

(i) X and the empty set, Ø, belong to τ ,

(ii) the union of any (finite or infinite) number of sets in τ belongs to τ ,
and

(iii) the intersection of any two sets in τ belongs to τ .

The pair (X,τ ) is called a topological space.

1.1.2 Example. Let X = {a, b, c, d, e, f} and
τ 1 = {X,Ø, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}}.

Then τ 1 is a topology on X as it satisfies conditions (i), (ii) and (iii) of

Definitions 1.1.1.

1.1.3 Example. Let X = {a, b, c, d, e} and
τ 2 = {X,Ø, {a}, {c, d}, {a, c, e}, {b, c, d}}.

Then τ 2 is not a topology on X as the union

{c, d} ∪ {a, c, e} = {a, c, d, e}
of two members of τ 2 does not belong to τ 2 ; that is, τ 2 does not satisfy

condition (ii) of Definitions 1.1.1.
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1.1.4 Example. Let X = {a, b, c, d, e, f} and

τ 3 = {X,Ø, {a}, {f}, {a, f}, {a, c, f}, {b, c, d, e, f}} .

Then τ 3 is not a topology on X since the intersection

{a, c, f} ∩ {b, c, d, e, f} = {c, f}

of two sets in τ 3 does not belong to τ 3 ; that is, τ 3 does not have property (iii)

of Definitions 1.1.1.

1.1.5 Example. Let N be the set of all natural numbers (that is, the

set of all positive integers) and let τ 4 consist of N, Ø, and all finite subsets of

N. Then τ 4 is not a topology on N, since the infinite union

{2} ∪ {3} ∪ · · · ∪ {n} ∪ · · · = {2, 3, . . . , n, . . . }

of members of τ 4 does not belong to τ 4 ; that is, τ 4 does not have property

(ii) of Definitions 1.1.1.

1.1.6 Definitions. Let X be any non-empty set and let τ be the

collection of all subsets of X. Then τ is called the discrete topology on the

set X. The topological space (X,τ ) is called a discrete space.

We note that τ in Definitions 1.1.6 does satisfy the conditions of Definitions

1.1.1 and so is indeed a topology.

Observe that the set X in Definitions 1.1.6 can be any non-empty set. So

there is an infinite number of discrete spaces – one for each set X.

1.1.7 Definitions. Let X be any non-empty set and τ = {X,Ø}.
Then τ is called the indiscrete topology and (X,τ ) is said to be an

indiscrete space.

Once again we have to check that τ satisfies the conditions of Definitions

1.1.1 and so is indeed a topology.

We observe again that the set X in Definitions 1.1.7 can be any non-empty

set. So there is an infinite number of indiscrete spaces – one for each set X.
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In the introduction to this chapter we discussed the

importance of proofs and what is involved in writing

them. Our first experience with proofs is in Example

1.1.8 and Proposition 1.1.9. You should study these

proofs carefully.

1.1.8 Example. If X = {a, b, c} and τ is a topology on X with {a} ∈ τ ,
{b} ∈ τ , and {c} ∈ τ , prove that τ is the discrete topology.

Proof.

We are given that τ is a topology and that {a} ∈ τ , {b} ∈ τ , and {c} ∈ τ .

We are required to prove that τ is the discrete topology; that is, we

are required to prove (by Definitions 1.1.6) that τ contains all subsets

of X. Remember that τ is a topology and so satisfies conditions (i),

(ii) and (iii) of Definitions 1.1.1.

So we shall begin our proof by writing down all of the subsets of X.

The set X has 3 elements and so it has 23 distinct subsets. They are: S1 = Ø,

S2 = {a}, S3 = {b}, S4 = {c}, S5 = {a, b}, S6 = {a, c}, S7 = {b, c}, and S8 = {a, b, c} = X.

We are required to prove that each of these subsets is in τ . As τ is a

topology, Definitions 1.1.1 (i) implies that X and Ø are in τ ; that is, S1 ∈ τ
and S8 ∈ τ .

We are given that {a} ∈ τ , {b} ∈ τ and {c} ∈ τ ; that is, S2 ∈ τ , S3 ∈ τ and

S4 ∈ τ .

To complete the proof we need to show that S5 ∈ τ , S6 ∈ τ , and S7 ∈ τ .
But S5 = {a, b} = {a} ∪ {b}. As we are given that {a} and {b} are in τ , Definitions
1.1.1 (ii) implies that their union is also in τ ; that is, S5 = {a, b} ∈ τ .

Similarly S6 = {a, c} = {a} ∪ {c} ∈ τ and S7 = {b, c} = {b} ∪ {c} ∈ τ .
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In the introductory comments on this chapter we observed that mathematics

is not a spectator sport. You should be an active participant. Of course

your participation includes doing some of the exercises. But more than this is

expected of you. You have to think about the material presented to you.

One of your tasks is to look at the results that we prove and to ask pertinent

questions. For example, we have just shown that if each of the singleton sets

{a}, {b} and {c} is in τ and X = {a, b, c}, then τ is the discrete topology. You

should ask if this is but one example of a more general phenomenon; that is,

if (X,τ ) is any topological space such that τ contains every singleton set, is τ
necessarily the discrete topology? The answer is “yes”, and this is proved in

Proposition 1.1.9.
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1.1.9 Proposition. If (X,τ ) is a topological space such that, for

every x ∈ X, the singleton set {x} is in τ , then τ is the discrete topology.

Proof.

This result is a generalization of Example 1.1.8. Thus you might expect

that the proof would be similar. However, we cannot list all of the

subsets of X as we did in Example 1.1.8 because X may be an infinite

set. Nevertheless we must prove that every subset of X is in τ .

At this point you may be tempted to prove the result for some special

cases, for example taking X to consist of 4, 5 or even 100 elements.

But this approach is doomed to failure. Recall our opening comments

in this chapter where we described a mathematical proof as a watertight

argument. We cannot produce a watertight argument by considering

a few special cases, or even a very large number of special cases. The

watertight argument must cover all cases. So we must consider the

general case of an arbitrary non-empty set X. Somehow we must prove

that every subset of X is in τ .

Looking again at the proof of Example 1.1.8 we see that the key

is that every subset of X is a union of singleton subsets of X and we

already know that all of the singleton subsets are in τ . This is also

true in the general case.

We begin the proof by recording the fact that every set is a union of its

singleton subsets. Let S be any subset of X. Then

S =
⋃
x∈S

{x}.

Since we are given that each {x} is in τ , Definitions 1.1.1 (ii) and the above

equation imply that S ∈ τ . As S is an arbitrary subset of X, we have that τ is

the discrete topology.

That every set S is a union of its singleton subsets is a result which we shall

use from time to time throughout the book in many different contexts. Note

that it holds even when S = Ø as then we form what is called an empty union

and get Ø as the result.


