dedicated to
Sharron
Contents

Acknowledgements xv
Preface xvii

PART 1
An introduction to the subject of the plasma boundary 1

1 Simple Analytic Models of the Scrape-Off Layer 6
 1.1 Solid Surfaces Are Sinks for Plasmas 6
 1.2 The Tokamak: An Example of a Low Pressure Gas Discharge Tube 8
 1.3 Tokamak Magnetic Fields 12
 1.4 The Scrape-Off Layer, SOL 15
 1.4.1 Limiter SOLs 15
 1.4.2 Divertor SOLs 17
 1.5 Characteristic SOL Time 19
 1.6 The 1D Fluid Approximation for the SOL Plasma 20
 1.7 The Simple SOL and Ionization in the Main Plasma 22
 1.8 1D Plasma Flow Along the Simple SOL to a Surface 26
 1.8.1 The Basic Features Reviewed 26
 1.8.2 Derivations of Results for 1D Plasma Flow in the Simple SOL 29
 1.9 Comparison of the Simple SOL and the Complex SOL 52

Problems 53
References 59

2 The Role and Properties of the Sheath 61
 2.1 The Bohm Criterion. Historical Background 61
 2.2 The Maxwellian Velocity Distribution 64
 2.3 The Bohm Criterion; \(T_i = 0 \). Simple Derivation 70
 2.4 The Bohm Criterion when \(T_i \neq 0 \) 76
 2.5 The Particle Flux Density to a Surface 78
 2.6 Potential Drop in the Sheath for Floating or Biased Surfaces 79
 2.7 Langmuir Probes 84
2.8 The Sheath Heat Transmission Coefficients. Basic Treatment 92
2.9 Some Basic Consequences of the Existence of the Sheath 95
2.10 The Solid Surface at an Oblique Angle to \mathbf{B}: The Chodura Sheath 98
 Additional Problems 105
 References 109

3 Experimental Databases Relevant to Edge Physics 111
3.1 Ion and Atom Back-scattering from Surfaces 111
3.2 Particle-Induced Electron Emission 114
3.3 Sputtering 116
 3.3.1 Physical Sputtering 118
 3.3.2 Chemical Sputtering of C by H 121
 3.3.3 The Energy of Sputtered Neutrals 124
 3.3.4 Radiation-Enhanced Sublimation, RES 125
3.4 Trapping of Hydrogen in Surfaces 125
3.5 Atomic Databases for Ionization, Dissociation and Radiation Rates 130
 3.5.1 Atomic Databases for Impurities 130
 3.5.2 Atomic Databases for Hydrogen 138
 Problems 146
 References 150

4 Simple SOL 153
4.1 The Simple SOL: The Sheath-Limited Regime 153
4.2 ‘Straightening Out’ the SOL for Modelling Purposes 153
4.3 Relating Density Scrape-Off Length λ_n to D_{SOL} 155
4.4 Modelling λ_n, λ_{Te}, λ_{Ti}, etc Simultaneously 158
4.5 Relating the Properties of Main and Edge Plasmas 161
4.6 Particle Confinement Time, τ_p 167
 4.6.1 The Case with the Hard Boundary Condition 169
 4.6.2 The Case with the Soft Boundary Condition 175
 4.6.3 The Global Recycling Coefficient 179
4.7 The Simple versus Complex SOL 181
4.8 Comparison of High Recycling, Strongly Radiating and Detached Regimes 183
4.9 The Effects of Ionization within the SOL 185
4.10 Parallel Temperature Gradients Along the SOL 187
 4.10.1 Calculating $T(s)$ 187
 4.10.2 Criteria for Existence of Parallel Temperature Gradients 192
4.11 Parallel Temperature Gradients in the Context of Electron–Ion Equi-partition 196
 4.11.1 An Initial Estimate of the Role of Equi-partition in the SOL 196
 4.11.2 Case A. $T_e = T_i$. No T-Gradient 197
 4.11.3 Case B. $T_e = T_i$. Significant T-Gradients Exist (Very Strong Collisionality) 197
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11.4 Case C. $T_e \neq T_i$. No Significant T-Gradients. Weak Collisionality (The Simple SOL)</td>
<td>199</td>
</tr>
<tr>
<td>4.11.5 Case D. $T_e \neq T_i$. Significant Temperature Gradients Exist. Intermediate Collisionality</td>
<td>201</td>
</tr>
<tr>
<td>4.11.6 Equipartition near the Target</td>
<td>201</td>
</tr>
<tr>
<td>4.11.7 Caveats Concerning Criteria for Equipartition and Existence of T-Gradients</td>
<td>202</td>
</tr>
<tr>
<td>4.11.8 Overview of the Criteria for Equipartition and T-Gradients. SOL Collisionality</td>
<td>204</td>
</tr>
<tr>
<td>Additional Problems</td>
<td>204</td>
</tr>
<tr>
<td>References</td>
<td>210</td>
</tr>
</tbody>
</table>

5 The Divertor SOL 212

5.1 Why use Divertors Rather than Limiters? 212
 5.1.1 Production of Impurities by Ion Impact 213
 5.1.2 Impurity Production by Neutral Impact on Walls 214
 5.1.3 Transport of Impurities to the Main Plasma 214
 5.1.4 Removal of the Helium Impurity, Pumping 215
 5.1.5 Removal of Hydrogen, Pumping 217
 5.1.6 Efficient Use of Magnetic Volume 217
 5.1.7 Size of Plasma-Wetted Area 218
 5.1.8 Opportunity for Power Removal by Volumetric Loss Processes 219
 5.1.9 Achievement of Plasma Detachment 220
 5.1.10 Energy Confinement 220
 5.1.11 Conclusions 220

5.2 The Basic Two-Point Model of the Divertor SOL 221

5.3 The Conduction-Limited Regime. The High Recycling Regime 230

5.4 Extensions to the Basic Two-Point Model. ‘Corrections’ 232

5.5 Including the Hydrogen Recycle Loss Energy in the Two-Point Model 237

5.6 The Plasma-Wetted Area of Limiters and Divertors. The Parallel Flux Area of the SOL 245

5.7 Expressions for the Power Scrape-Off Width, etc 252
 5.7.1 Introduction 252
 5.7.2 Case of Negligible Parallel T-Gradient 252
 5.7.3 Case of Significant Parallel T-Gradient 253

5.8 SOL Collisionality and the Different Divertor Regimes 264

5.9 Divertor Asymmetries 267

5.10 The Effect of Divertor Geometry 270

5.11 The Ergodic Divertor 270

Additional Problems 273

References 274

Copyright © 2000 IOP Publishing Ltd.
6 Plasma Impurities

6.1 Introduction: Harmful and Beneficial Effects of Impurities

6.2 The Three Principal Links in the Impurity Chain

6.2.1 The Source

6.2.2 Edge Transport

6.2.3 Transport in the Main Plasma

6.3 Measuring the Impurity Source

6.4 Models for 1D Radial Transport

6.4.1 The Engelhardt Model

6.4.2 The Controlling Role of Edge Processes in Impurity Behaviour

6.4.3 The Questionable Concept of ‘Impurity Screening’

6.5 Impurity Transport Parallel to B in the SOL

6.5.1 Introduction

6.5.2 Defining the ‘Simple One-Dimensional Case’ for Modelling Impurity Retention by Divertors

6.5.3 The Parallel Forces on Impurity Ions

6.5.4 A Simple 1D Fluid Model of Impurity Leakage from a Divertor

6.5.5 Estimating Divertor Leakage

6.6 Edge Impurity Source/Transport Codes

6.6.1 Why Have Codes?

6.6.2 Interpreting Edge Impurity Measurements Using Codes

6.6.3 Edge Fluid Impurity Codes

6.6.4 Monte Carlo Impurity Codes

6.7 Helium and Pumping

6.8 Erosion and Redeposition of Solid Structures at the Plasma Edge

6.9 Additional Problems

References

7 The H-Mode and ELMs

References

8 Fluctuations in the Edge Plasma

References

PART 2

Introduction to fluid modelling of the boundary plasma

Introduction to Part II

Copyright © 2000 IOP Publishing Ltd.
Contents

9 The 1D Fluid Equations

9.1 Introduction 384
9.2 The Kinetic Equation 384
9.3 The Conservation of Particles Equation 385
9.4 The Momentum Conservation Equation 386
9.5 Ohm's Law 392
9.6 The Energy Conservation Equation, T_\parallel 392
9.7 The Energy Conservation Equation, T_\perp 396
9.8 The Parallel Viscous Stress 397
9.9 The Conservation Equations Summarized 399
9.10 The Sheath-Limited Regime 400
9.11 The Conduction-Limited Regime 401
9.12 Self-Collisionality and the Problem of Closing the Fluid Equations 402
References 402

10 1D Models for the Sheath-Limited SOL

10.1 Introduction 404
10.2 The 1D Isothermal Fluid Model 404
10.3 Isothermal Model. Non-Constant Source S_p 406
10.4 The Effect of Neutral Friction on Plasma Flow Along the SOL 406
10.5 Other 1D Models for the Sheath-Limited SOL 408
10.6 The Kinetic 1D Model of Tonks and Langmuir. Cold Ions 409
10.7 Kinetic Models for $T_i \neq 0$ 413
10.8 Adiabatic, Collisionless Fluid Models 416
10.9 Adiabatic, Strongly Collisional Fluid Models 419
10.10 Adiabatic, Intermediate Collisional Fluid Models 419
10.11 Comparing 1D Collisionless Kinetic and Collisionless Fluid Models 420
References 422

11 1D Modelling of the Conduction-Limited SOL

11.1 Introduction 423
11.2 1D Fluid Modelling for the Conduction-Limited SOL 426
References 436

12 ‘Onion-Skin’ Method for Modelling the SOL

12.1 The Concept of a SOL Flux Tube 437
12.2 The Onion-Skin Method of Modelling the SOL 444
12.3 Code–Code Comparisons of Onion-Skin Method Solutions with 2D Fluid Code Solution of the SOL 447
References 449

13 An Introduction to Standard 2D Fluid Modelling of the SOL

References 457
PART 3
Plasma Boundary Research 459
 Introduction to Part III 461
14 Supersonic Flow along the SOL 462
 14.1 The Effect on the SOL of Supersonic Flow Into the Sheath 462
 14.2 The Mid-stream Sonic Transition for an Analytic Case 464
 14.3 Supersonic Solutions for an Analytic Case 467
 14.4 Supersonic Solutions in Numerical Codes 468
 References 470
15 Flow Reversal in the SOL 471
 References 476
16 Divertor Detachment 477
 16.1 Introduction 477
 16.2 Background Relevant to Divertor Detachment 478
 16.3 Experimental Observations of Divertor Detachment 483
 16.4 Understanding Detachment 492
 16.4.1 Introduction 492
 16.4.2 Low Plasma Temperatures Necessary but Not Sufficient for Detachment 493
 16.4.3 The Necessity of Volumetric Momentum and Power Losses 493
 16.4.4 The Effect of Volume Recombination Acting Alone 495
 16.4.5 The Effect of Ion–Neutral Friction Acting Alone 497
 16.4.6 The Combined Effect of Ion–Neutral Friction and Volume Recombination on Detachment 502
 16.4.7 2D Fluid Code Modelling of Divertor Detachment using the UEDGE Code 505
 16.4.8 The ‘Cause’ versus the ‘Explanation’ of Detachment 508
 References 510
17 Currents in the SOL 512
 17.1 Introduction 512
 17.2 Thermoelectric Currents Driven by Cross-Field Temperature Gradients 513
 17.2.1 Case A. Segmented Limiter with \(j_\perp = 0 \) 514
 17.2.2 Case B. Continuous Limiter with \(j_\perp = 0 \) 514
 17.2.3 Case C. Segmented Limiter with \(\sigma_{\perp,\text{cond}} \to \infty \) 516
 17.2.4 Case D. Continuous Limiter with \(\sigma_{\perp,\text{cond}} \to \infty \) 517
 17.3 Inferring \(V_{\text{plasma}}(r) \) from Probe Measurements of \(V_{\text{float}}(r) \) and \(T_e(r) \) 520
 17.4 Thermoelectric Currents Driven By Parallel Temperature Gradients 520
 17.5 Cross-Field Currents 525
 17.5.1 Experimental Results 525
 17.5.2 Simple Models for \(\sigma_\perp \) 527

Copyright © 2000 IOP Publishing Ltd.