Contents

Preface	xi
Acknowledgements | xii

Chapter 1 Tables and general data

1. SI units and their relation to other units | 1
2. SI, metric, non-SI and non-metric conversions | 2
3. Conversion table of stress values | 5
4. Areas and volumes of circles, spheres, cylinders etc. | 6
5. The physical properties of metals | 7
6. Densities of casting alloys | 9
7. Approximate bulk densities of common materials | 10
8. Patternmakers’ contraction allowances | 11
9. Volume shrinkage of principal casting alloys | 13
10. Comparison of sieve sizes | 14
11. Calculation of average grain size | 15
12. Calculation of AFS grain fineness number | 16
13. Recommended standard colours for patterns | 17
14. Dust control in foundries | 18
15. Buoyancy forces on cores | 18
16. Opening forces on moulds | 19
17. Dimensional tolerances and consistency achieved in castings | 21

Chapter 2 Types of cast iron

18. Introduction | 23
19. Physical properties of cast irons | 27
20. Iron casting processes | 28

Chapter 3 Grey cast iron

21. Specifications | 30
22. Relationship between composition, strength and structure of grey cast iron | 32
23. Applications of grey iron castings | 37
24. The production of grey irons | 37
Chapter 4 Melting cast iron

Introduction 40
Cupola melting 40
Electric melting 53
Shop floor control of metal composition 60

Chapter 5 Inoculation of grey cast iron

Introduction 62
Ladle inoculation 64
Late stream inoculation 66
Mould inoculation 69

Chapter 6 Ductile iron

Production of ductile iron 70
Melting ductile iron base 74
Cupola melting and duplexing 74
Induction furnace melting 75
Use of the tundish cover ladle 75
Sandwich treatment 77
NODULANT 77
Pure magnesium converter process 77
Cored wire treatment 78
In-the-mould treatment 78
Inhibiting elements 78
Inoculation and fading 79
Specifications for ductile cast iron 79
Heat treatment of ductile iron 82
Casting ductile iron 84
Compacted graphite irons 84

Chapter 7 Malleable cast iron

Introduction 90
Whiteheart malleable 90
Blackheart malleable iron 92

Chapter 8 Special purpose cast irons

Heat resisting alloys 95
Corrosion resistant cast irons 101
Wear resistant cast irons 102
Chapter 13 Resin bonded sand

Chemical binders 167
Self-hardening process 167
Sand reclamation 173
Self-hardening resin binder systems 180
Triggered hardening systems 184
Heat triggered processes 186
Gas triggered processes 192
Review of resin coremaking processes 198

Chapter 14 Sodium silicate bonded sand

CO₂ silicate process (basic process) 204
Improvements to the CO₂ silicate process 207
Self-setting sodium silicate processes 209
Adhesives and sealants 213

Chapter 15 Lost foam casting

Principle of the process 216
Patternmaking 217
Assembling clusters 218
Coating the patterns 218
Investing in sand 218
The mechanism of casting into foam patterns 218
Advantages of lost foam casting 221
Disadvantages 222
Applications 222
The future 224

Chapter 16 Coatings for moulds and cores

The need for a coating 226
Choice of coating and form of supply 227
Components of a coating 228
Application methods for coatings 230
Coatings for iron and steel foundries 234
Coatings for high production foundries 234
Coatings for jobbing moulds and cores 237
Spirit based coatings 237
The TRIBONOL process 240
Miscellaneous coatings 241
Coatings for foundry tools 243
<table>
<thead>
<tr>
<th>Chapter 17 Filtration and the running and gating of iron castings</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>245</td>
</tr>
<tr>
<td>Conventional running systems without filters</td>
<td>245</td>
</tr>
<tr>
<td>Filtration of iron castings</td>
<td>250</td>
</tr>
<tr>
<td>SEDEX ceramic foam filters</td>
<td>256</td>
</tr>
<tr>
<td>Cellular ceramic filters</td>
<td>259</td>
</tr>
<tr>
<td>Combined filter, feeder and pouring cup, the KALPUR direct pouring system</td>
<td>266</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 18 Filtration and the running and gating of steel castings</th>
<th>272</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>272</td>
</tr>
<tr>
<td>Controlling the flow of metal</td>
<td>272</td>
</tr>
<tr>
<td>Conventional running systems without filters</td>
<td>274</td>
</tr>
<tr>
<td>The use of ceramic foam filters</td>
<td>277</td>
</tr>
<tr>
<td>Inclusions in steel castings</td>
<td>277</td>
</tr>
<tr>
<td>STELEX ZR ceramic foam filters</td>
<td>279</td>
</tr>
<tr>
<td>KALPUR ST direct pour unit</td>
<td>286</td>
</tr>
<tr>
<td>Cost savings through the use of STELEX and KALPUR</td>
<td>294</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 19 Feeding of castings</th>
<th>296</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>296</td>
</tr>
<tr>
<td>Natural feeders</td>
<td>296</td>
</tr>
<tr>
<td>Aided feeders – feeding systems</td>
<td>297</td>
</tr>
<tr>
<td>The calculation of feeder dimensions</td>
<td>301</td>
</tr>
<tr>
<td>Determination of feeding requirements</td>
<td>305</td>
</tr>
<tr>
<td>Steel, malleable iron, white irons, light alloys and copper based alloy castings</td>
<td>305</td>
</tr>
<tr>
<td>Grey and ductile irons</td>
<td>307</td>
</tr>
<tr>
<td>Foseco feeding systems</td>
<td>310</td>
</tr>
<tr>
<td>KALPUR filter feeder units</td>
<td>322</td>
</tr>
<tr>
<td>Breaker cores</td>
<td>323</td>
</tr>
<tr>
<td>Application of feeder sleeves</td>
<td>325</td>
</tr>
<tr>
<td>FERRUX anti-piping compounds for iron and steel castings</td>
<td>331</td>
</tr>
<tr>
<td>Aids to the calculation of feeder requirements</td>
<td>334</td>
</tr>
<tr>
<td>FEEDERCALC</td>
<td>335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 20 Computer simulation of casting processes</th>
<th>344</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>344</td>
</tr>
<tr>
<td>Solidification modelling</td>
<td>344</td>
</tr>
</tbody>
</table>
Contents

Mould filling simulation ... 346
The SOLSTAR solidification program 346
Cost benefits of solidification simulation 351
Conclusions ... 352

Index .. 353
Preface

The last edition of the *Foseco Foundryman’s Handbook* was published in 1994 and like all the earlier editions, it aimed to provide a practical reference book for all those involved in making castings in any of the commonly used alloys by any of the usual moulding methods. In order to keep the *Handbook* to a reasonable size, it was not possible to deal with all the common casting alloys in detail. Since 1994 the technology of casting has continued to develop and has become more specialised so that it has been decided to publish the new edition of the *Handbook* in two volumes:

- **Ferrous** dealing with grey, ductile and special purpose cast irons together with carbon, low alloy and high alloy steels
- **Non-ferrous** dealing with aluminium, copper and magnesium casting alloys

Certain chapters (with slight modifications) are common to both volumes: these chapters include tables and general data, sands and sand bonding systems, resin bonded sand, sodium silicate bonded sand and feeding systems. The remaining chapters have been written specifically for each volume.

The *Handbook* refers to many Foseco products. Not all of the products are available in every country and in a few cases, product names may vary. Users should always contact their local Foseco company to check whether a particular product or its equivalent is available.

The Foseco logo and all product names appearing in capital letters are trademarks of the Foseco group of companies, used under licence.

John R. Brown