Biothermodynamics : the role of thermodynamics in biochemical engineering

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: U. von Stockar

Ngôn ngữ: eng

ISBN-10: 1466582170

ISBN-13: 978-1466582170

Ký hiệu phân loại: 660.6 Biotechnology

Thông tin xuất bản: Lausanne, Switzerland : EFPL Press, 2013

Mô tả vật lý: 1 online resource (xxi, 608 pages) : , illustrations (black and white)

Bộ sưu tập: Khoa học ứng dụng

ID: 157826

ACIDPRODUCTION IN MICROORGANISMSIntroductionOutline of the approachThermodynamics of dicarboxylic acid transportGenetic engineering of target systems based upon thermodynamic analysis resultsConclusion. AppendicesReferencesTHERMODYNAMIC ANALYSIS OF METABOLIC PATHWAYSIntroductionThermodynamic feasibility analysis of individual metabolic pathwaysEstimation of observable standard Gibbs energies of reactionMaterials and methods [22]Results and discussionConclusionsReferencesIndex. FundamentalsTHE ROLE OF THERMODYNAM ICS IN BIOCHEMICAL ENGINEERINGBasic remarks on thermodynamics in biochemical engineeringFundamental concepts in equilibrium thermodynamicsCharged species, gels and other soft systemsStability and activity of biomacromoleculesThermodynamics of live cellsThermodynamic analysis of metabolismConclusionsReferencesPHASE EQUILIBRIUM IN NON-ELECTROLYTE SYSTEMSIntroductionEssential formal relations1 Criteria for equilibriumLiquid-liquid equilibriaSolid-liquid equilibriaReferencesVirial Expansion for Chemical Potentials in a Dilute Solution for Calculation of Liquid-Liquid EquilibriaIntroductionExample of protein separationReferencesThe thermodynamics of electrically charged molecules in solutionWhy do electrically charged molecules call for a particular thermodynamic treatment?The thermodynamics of electrolytesElectrostaticsEmpirical and advanced ion activity coefficient modelsReferencesWATERIntroductionPhenomenological aspects of waterM olecular properties of waterWater as a solventFurther readingCharged Species, Gels, and other Soft SystemsPOLYMERS, POLYELECTROL YTES AND GELSFlory's Theory of polymer solutionsElectric Charge on a weak polyelectrolyteHydrogels: Elementary Equations for Idealized Networks and Their Swelling BehaviorAppendix: Entropy of mixing for polymer solutionsReferencesSELF-ASSEMBLY OF AMPHIPHILIC MOLECULESIntroductionSelf-assembly as phase separationDifferent types of self-assembled structuresAggregation as a "start-stop" process: size and shape of self-assembled structuresMass action model for micellizationFactors that influence the critical micelle concentrationBilayer structuresReverse micellesMicroemulsionsSelf-assembled structures in applicationsReferencesMOLECULAR THERMODYNAMICS OF PARTITIONING IN AQUEOUS TWO-PHASE SYSTEMSIntroductionFlory-Huggins theory applied to aqueous two-phase partition. SystemsDependenceof partitioning on system variablesSimple interpretation of the effects of added electrolyteCalculation of phase diagrams and partitioningConclusionsReferencesGENERALIZATION OF THERMODYNAMIC PROPERTIES FOR SELECTION OF BIOSEPARATION PROCESSESPhase behavior in Bioseparation ProcessesGeneralized correlationGeneralized polarity scalesConclusionsAPPENDIXReferencesProtein Precipitation with Salts and/or PolymersIntroductionEquation of stateThe potential of mean forcePrecipitation calculationsGeneralization to a multicomponent solution. CrystallizationReferencesMULTICOMPONENT ION EXCHANGE EQUILIBRIA OF WEAK ELECTROLYTE BIOMOLECULESIntroductionMulti-component ion exchange of weak electrolytesExperimental case studiesConclusionsReferencesStability and Activity of BiomacromoleculesPROTEINSIntroductionThe amino acids in proteinsThe three-dimensional structure of protein molecules in aqueous solutionNon-covalent interactions that determine the structure of a protein molecule in waterStability of protein structure in aqueous solutionThermodynamic analysis of protein structure stabilityReversibility of protein denaturation aggregation of unfolded protein moleculesReferencesTHERMODYNAMICS IN MULTIPHASE BIOCATALYSISWhy multiphase biocatalysis?Thermodynamics of enzymatic reactions in aqueous systemsNon-aqueous media for biocatalysis. Using enyzmes in organic solventsPhase equilibria in multiphase enyzmatic reactionsWhole cells in organic solventsList of symbolsReferencesThermodynamics of the Physical Stability of Protein SolutionsIntroductionFactors influencing protein stabilityMechanism of protein aggregationSummary and conclusionsReferencesMeasuring, Interpreting and Modeling the Stabilities and Melting Temperatures of B-Form DNA s that Exhibit a Two-State Helix-to-Coil TransitionIntroductionMethods for measuring duplex DNA melting.
Includes bibliographical references and index.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH