Thermal and Thermomechanical Modeling to Design a Gallium Oxide Power Electronics Package [electronic resource] : Preprint

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 621.3 Electrical, magnetic, optical, communications, computer engineering; electronics, lighting

Thông tin xuất bản: Golden, Colo. : Oak Ridge, Tenn. : National Renewable Energy Laboratory (U.S.) ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: 1.0 MB : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 256214

 The power electronics industry is currently undergoing a major transition by replacing silicon devices with wide-bandgap devices. Gallium oxide devices have the potential to accelerate this transition by offering comparable or even superior performance to other wide-bandgap devices, but at a much lower cost. Recent breakthroughs include demonstration of a laboratory-scale gallium oxide transistors and diodes
  however, a functional power electronics package for these devices is yet to be developed. In this paper, the research methodology in designing an electronics package for gallium oxide devices is outlined. Finite element-based thermal and thermomechanical modeling simulations were conducted to realize a package design that meets the combined target of minimal thermal resistance and improved reliability. Different package designs that include various material combinations and cooling configurations were explored, and their thermal and thermomechanical performance are reported. Furthermore, the short-circuit withstanding capabilities of gallium oxide devices were studied and compared with silicon carbide.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH