Experimental single-strain mobilomics reveals events that shape pathogen emergence [electronic resource]

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 574.5 [Unassigned]

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. National Nuclear Security Administration ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2016

Mô tả vật lý: Size: 50 p. : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 260873

 Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome
  circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to the rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH