Co-optima fuels combustion [electronic resource] : A comprehensive experimental investigation of prenol isomers

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả:

Ngôn ngữ: eng

Ký hiệu phân loại: 666.9 Masonry adhesives

Thông tin xuất bản: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Energy Efficiency and Renewable Energy ; Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2019

Mô tả vật lý: Size: Article No. 115630 : , digital, PDF file.

Bộ sưu tập: Metadata

ID: 262795

 Carbon monoxide time-histories, ignition delay times, and laminar burning velocity measurements are reported for the oxidation of 3-methyl-2-buten-1-ol (prenol) and 3-methyl-3-buten-1-ol (isoprenol). These prenols are fuel candidates outlined by the U.S. Department of Energy?s Co-Optimization of Fuels and Engines (Co-Optima) program. The laminar burning velocity measurements were conducted for two fuels with synthetic air within a constant-volume spherical combustion chamber at initial conditions of 428 K and 1 atm for a range of equivalence ratios from 0.75 to 1.50. The laminar burning velocities of the two fuels were found to be similar, and the maximum value occurred at an equivalence ratio near 1.0. Carbon monoxide time-histories and ignition delay times were recorded behind reflected shockwaves in a double-diaphragm, heated shock tube over the temperature range 1269?1472 K near 9.4 atm with a mixture of 0.05% fuel/0.35% O2/99.6% Ar. Comparisons with predictions of a detailed chemical kinetic mechanism from the literature were provided. Current model predictions overpredicted both the ignition delay time and the max CO yield
  however, the model captured the profile of CO formation well. Detailed uncertainty and sensitivity analyses were carried out to identify important reactions that need attention for accurate prediction of these fuel?s chemistry. Further investigation into the rate of C3H3 + O2 = CH2CO + HCO reaction was suggested based on current experiments. The experimental data and analysis presented here is critical in the development, validation and improvement of kinetic models of these promising Co-Optima fuels.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2020 THƯ VIỆN HUTECH